Fungal Wheat Diseases – short descriptions and images

Leaf Blotch (*Septoria tritici*)

- **Conditions for disease development** include temperatures between 59 to 77 °F and periods of rainy or humid weather that last for more than 1 day. Disease outbreaks occur more prevalently on lower leaves in the early spring after cool, wet conditions. The pathogen will start to decline as temperatures increase.

- **Symptoms** usually develop on winter wheat in early spring on the lowest overwintered leaves and will develop on higher leaves if cool, wet conditions persist. Lesions have tan to brown centers surrounded by yellow areas that are laterally restricted. Lesions may have small, black specks (pycnidia) in the necrotic areas of lesions. Lesions can be scattered over the leaf blade and may coalesce to cover large portions of the leaf blade.

- **Management** options include reducing risk of infection by growing wheat at 2 year intervals, wide row spacing, planting resistant varieties, and timely fungicide treatments (see Wheat Fungicide Table).

Glume Blotch (*Stagonospora nodorum*)

- **Conditions for disease development** are more prevalent in dense foliage and areas of heavy fertilization. No-till and minimum tillage increase the risk of occurrence of disease in continuous or short-rotation wheat production. Disease outbreaks are promoted by wet, warm weather. Optimal temperature for symptom development is between 68-80 °F.

- **Symptoms** are often first seen in the spring on the lowest overwintered leaves and will develop on higher leaves if warm, wet conditions persist. Foliar lesions begin as yellow flecks, becoming brown or grayish brown, elongated, and often lens-shaped. Stem infections are also common, especially at nodes. Glume infections result in purple brown or grayish brown streaks and blotches, starting at the glume tips.

- **Management** options include reducing risk of infection by growing wheat at 2 year intervals, balanced fertilization rates, wide row spacing, planting resistant varieties, and timely fungicide treatments (see Wheat Fungicide Table).

Leaf blotch and glume blotch may occur in different combinations within a field and on individual plants
Stripe Rust/Yellow Rust (Puccinia striiformis)

- **Conditions for disease development** are optimal during 50 to 64 °F with intermittent rain or dew. High levels of disease can occur in years with cool, wet springs, mild winters, and cool summers for spores to survive from season to season. Stripe rust can overwinter on leaf tissue, volunteer wheat, and other grass hosts as it can survive temperatures as low as 23 °F. The spores rapidly decline at temperatures above 59 °F.

- **Symptoms** first appear as yellow, chlorotic patches on leaves. **Tiny, yellow to orange raised pustules** develop in these areas with thousands of yellow orange spores. **Distinct stripes** of pustules develop on upper leaves after stem elongation, but not on seedling leaves. Depending on temperature and the resistance of the cultivar, yellow to tan spots or stripes of various sizes can develop, with or without spores.

- **Management** options include growing resistant cultivars, destroying volunteer wheat, avoiding excessive water and fertilizer, and timely fungicide applications (see Wheat Fungicide Table). Resistant cultivars usually contain adult plant resistance, where the resistance occurs at later growth stages such as jointing/elongation or flag leaf emergence.

Leaf Rust (Puccinia triticina)

- **Conditions for disease development** include temperatures between 64 and 77 °F with high humidity or moisture. After spores land on leaves infection is completed in 6 to 8 hours and disease symptoms can develop within 7 days.

- **Symptoms** include small round, or oblong raised pustules that are orange red in color. Leaf rust pustules are more scattered and larger in size compared to stripe rust.

- **Management** options include growing resistant cultivars, destruction of volunteer wheat, avoiding excessive water and fertilizer, and timely fungicide applications (see Wheat Fungicide Table).
Powdery Mildew (Blumeria graminis syn. Erysiphe graminis)

- **Conditions for disease development** are optimal between 59 and 72 °F with high humidity, and are more prevalent in dense foliage and areas of heavy fertilization. The pathogen survives on volunteer wheat and in the spring when wheat growth resumes powdery mildew symptoms can appear on the older leaves initially.

- **Symptoms** will usually appear in the lower canopy on older leaves and is more prevalent on the upper surface. Stems can also become infected and show the same symptoms as leaves. Symptoms include patches of white, cottony growth (colonies) on the surface of the plant that can turn a dull gray brown. As wheat and the powdery mildew mature, distinct brown black dots within aging colonies may be seen, which are the sexual fruiting structures (cleistothecia). Symptoms can occur at any time after seedlings emerge.

- **Management** options include growing resistant varieties, destruction of volunteer wheat, balanced fertilization rates, wide row spacing, and timely fungicide applications (see Wheat Fungicide Table).

Fusarium Head Blight/Scab (Fusarium species)

- **Conditions for disease development** are more prevalent in wheat planted behind corn and when warm, wet conditions occur during flowering. Although wheat can become infected from head emergence until harvest, infections initiated at and soon after flowering have the greatest destructive potential.

- **Symptoms** include bleaching of spikelets or entire heads of wheat. Superficial, often pink or orange masses of spores may be seen on and especially at the base of diseased spikelets. Small, dark (blue-black) fruiting structures will often be seen some time after the initial infection. If seed is formed from infected heads, it is often shriveled or discolored. The fungus may also produce mycotoxins in the wheat. The most frequently associated mycotoxin is deoxynivalenol (vomitoxin, also referred to as DON), which is very poisonous and hence grain can be rejected based on the amount of mycotoxin present.

- **Management** options include crop rotation with at least a 1-year break from a host crop (corn, wheat, barley, and other cereals), plowing to bury crop residues, using a less susceptible variety (research is ongoing to develop a commercial variety with improved resistance), and timely fungicide applications (see Wheat Fungicide Table and Fusarium Head Blight Prediction Center).